1245. Applications of Proton Resonance Spectroscopy to Structural Problems. Part XXIII.¹ Determination of Hammett σ-Constants for *Heterocycles*

By A. R. KATRITZKY and F. J. SWINBOURNE

The chemical shifts of the α -proton of a series of β -arylacrylic acids are correlated by the Hammett equation; measurement of pyridine, pyridine 1-oxides, and pyridine derivatives gives σ -values for the heteroatom " substituents."

THE Hammett equation has become one of the most widely used relationships to correlate structure-reactivity in aromatic compounds. The application of the equation has been extended from benzenoid to heteroaromatic compounds, and the replacement of a heteroatom for CH or CH:CH in benzene considered as a "substitution" and assigned a σ -constant. However, as a recent review ² shows, relatively little work has been carried out on heteroaromatic compounds, and often the available values of σ -constants for heteroatoms are not derived from reaction series which have been well studied and shown to be reliable for benzenoid derivatives. We thought that it would be instructive to apply a simple nuclear magnetic resonance (n.m.r.) method to this problem, and have accordingly studied a series of β -aryl- and β -heteroaryl-acrylic acids.

EXPERIMENTAL

N.m.r. spectra were recorded on a Perkin-Elmer 40 Mc. spectrometer, for 0.3M-solutions in dimethyl sulphoxide, and in trifluoroacetic acid, with tetramethylsilane as internal reference. Sodium salts were also measured as 0.3 m-solutions in deuterium oxide, with acetonitrile (τ $CH_3 \otimes 1$) as internal reference.

The compounds were recrystallised commercial specimens, or were prepared by literature methods,^{3,4} and had melting points in agreement with published values. The sodium salts were prepared from the respective acids.

- ¹ Part XXII, J. F. Cavalla, A. R. Katritzky, M. J. Sewell, and G. R. Bedford, J., 1965, 4546.
- ² H. H. Jaffé and H. Lloyd Jones, Adv. Heterocyclic Chem., 1964, **3**, 209.
 ³ A. R. Katritzky and A. M. Monro, J., 1958, 150.
- ⁴ M. Hartmann and W. Bosshard, Helv. Chim. Acta, 1941, 24, 28E.

DISCUSSION

The results are recorded in Table 1. The coupling constants of *trans*-ethylene have been discussed *inter alia* by Hogeveen *et al.*,⁵ and Laszlo and Schleyer.⁶ The last workers give the relations:

$$J_{trans} = 19.0 - 3.2 (E_{\rm R} + E_{\rm R'} - 2E_{\rm H})$$

where $E_{\mathbf{R}}$ represents the electronegativity of substituent R. The electronegativity of substituted aryl groups varies little, and the almost constant value of J in Table 1 is expected.

The β -hydrogen atoms in β -arylacrylic acids had chemical shifts at lower field than the α -protons because of (a) the effect of the conjugated carbonyl group, and (b) the aromatic ring current. When the relative chemical shifts for the α - and β -protons for the substituted cinnamic acids were plotted against Hammett σ -constants, a good correlation (r = -0.973) was found for the α -protons (see Figure; the point for NH₂ may be affected by solvation of the aminogroup) (r = -0.973 for dimethyl sulphoxide solution, r = -0.912 for trifluoroacetic acid), but less so for the β -protons (r = -0.850). Steric and magnetic anisotropic (possibly including ring current) effects may account for the poor relationship for the β -protons. The anions show little regularity, possibly owing to hydration differences.

Using the Hammett plots for the α -protons in dimethyl sulphoxide, and the chemical shifts found for the pyridylacrylic acids and their 1-oxides, Hammett σ -constants were obtained for the pyridines and pyridine 1-oxides (Table 2). σ -Constants for the pyridinium ions were similarly obtained from the observations in trifluoroacetic acid.

$\mathbf{R'}$	$H\beta(\tau)$	$H \alpha(\tau)$	J (c./sec.)	R	R'	$H\beta(\tau)$	$H \alpha(\tau)$	J (c./sec.)
$CO_{\bullet}H$	2.39	3.17	15.9	m-MeO·C.H.	$CO_{a}H$	2.43	3.47	16.2
-	(1.96) *	(2.84)	(16.1)		4	(2.06)	(3.46)	(16.2)
CO,Et	$2 \cdot 34$	$3 \cdot 12$	16 .0	m-Cl·C ₆ H ₄	CO,H	2.47	3.39	16.6
CO'H	2.07	2.99	16.5	• •	-	(2.10)	(3.48)	(16.0)
CO_H	2.36	3.32	16.3	m-NO ₂ ·C ₆ H ₄	CO °H	`2·29 [′]	`3·29 [′]	`16·2´
4	(1.97)	(2.93)	(16.5)	204	-	(1.96)	(3.28)	(16.1)
CO,Pr ⁿ	`2·32 [′]	`3·22	`16·2´	p-Me,N·C,H	CO.H	`2·52 [´]	`3·80 [′]	`15·8́
CO Bui	2.31	3.23	16.2	φ-MeÕ•C₄H₄	CO.H	2.43	3.63	16.3
CONH.	2.53	3.27	16.3	1 0 4	-	(2.05)	(3.57)	(16.0)
CO'H _	2.47	3.29	16.6	<i>ϕ</i> -NH₀•C₄H₄	CO.H	2.59	3.89	`16·1́
COJEt	2.42	3.18	16.1	φ-Me•Č _e H ₄	CO_H	2.44	3.54	16.0
CO ₉ Pr ⁿ	2.41	3.17	16.0	1 0 1	-	(2.04)	(3.54)	(16.0)
CO Bu ⁿ	2.41	3.17	16.2	<i>p</i> -Cl•C _€ H ₄	CO.H	2.44	`3 ∙46′	`16·2´
CONH.	2.69	3.23	16.2	φ-NO, C _ℓ H	CO'H	2.32	3.28	16.2
CO'H	2.44	3.24	16.2	Ċ,H,	CO_H	$2 \cdot 41$	3.47	16.0
4	(2.00)	(3.10)	(16.4)	0.0	4	(2.00)	(3.46)	(16.2)
CO ₃ Me	`2·37́	`3 ∙ 13́	`16·3´	m-MeO·C _e H ₄	CO,Na	`2·83 [′]	`3·67 [′]	16.2
CONH,	2.62	3.18	16.2	<i>ϕ</i> -Me _a N·C _e H ₄	CO ₅ Na	2.82	3.82	16.1
CO'H	2.47	3.39	16.2	φ-MeO·C _e H	CO _a Na	2.82	3.78	16.2
COLEt	2:42	3.30	16.0	φ-Me•C _e H ₄	CO ₃ Na	2.81	3.71	16.2
-				p-Cl•C ₆ H₄	CO ₂ Na	2.82	3.76	16.2
				p-NO [•] C [•] H ₄	CO ₂ Na	2.89	3.63	16.2
				Ĉ₄H₅ °°	CO₂Na	2.77	3.65	16.1
	R' CO_2H CO_2Et CO_2H CO_2Pr^n CO_2Bu^i CO_2Bu^i CO_2H CO_2Et CO_2Et CO_2H CO_2H CO_2H CO_2H CO_2H CO_2H CO_2H CO_2H CO_2H CO_2H CO_2Et	$\begin{array}{cccc} {\rm R}' & {\rm H}\beta(\tau) \\ {\rm CO}_2 {\rm H} & 2\cdot 39 \\ & & (1\cdot 96) \ast \\ {\rm CO}_2 {\rm Et} & 2\cdot 34 \\ {\rm CO}_2 {\rm H} & 2\cdot 07 \\ {\rm CO}_2 {\rm H} & 2\cdot 36 \\ & & (1\cdot 97) \\ {\rm CO}_2 {\rm Pr}^n & 2\cdot 32 \\ {\rm CO}_2 {\rm Bu}^i & 2\cdot 31 \\ {\rm CONH}_2 & 2\cdot 53 \\ {\rm CO}_2 {\rm H} & 2\cdot 47 \\ {\rm CO}_2 {\rm Et} & 2\cdot 42 \\ {\rm CO}_2 {\rm Pr}^n & 2\cdot 41 \\ {\rm CO}_2 {\rm Bu}^n & 2\cdot 41 \\ {\rm CONH}_2 & 2\cdot 69 \\ {\rm CO}_2 {\rm H} & 2\cdot 44 \\ & & (2\cdot 00) \\ {\rm CO}_2 {\rm Me} & 2\cdot 37 \\ {\rm CONH}_2 & 2\cdot 62 \\ {\rm CO}_2 {\rm H} & 2\cdot 47 \\ {\rm CONH}_2 & 2\cdot 62 \\ {\rm CO}_2 {\rm H} & 2\cdot 47 \\ {\rm CONH}_2 & 2\cdot 62 \\ {\rm CO}_2 {\rm H} & 2\cdot 47 \\ {\rm CO}_2 {\rm Et} & 2\cdot 47 \\ {\rm CO}_2 {\rm Et} & 2\cdot 42 \\ \end{array}$	$\begin{array}{ccccc} {\rm R}' & {\rm H}\beta(\tau) & {\rm H}\alpha(\tau) \\ {\rm CO}_2{\rm H} & 2\cdot39 & 3\cdot17 \\ & & (1\cdot96) * & (2\cdot84) \\ {\rm CO}_2{\rm Et} & 2\cdot34 & 3\cdot12 \\ {\rm CO}_2{\rm H} & 2\cdot07 & 2\cdot99 \\ {\rm CO}_2{\rm H} & 2\cdot36 & 3\cdot32 \\ & & (1\cdot97) & (2\cdot93) \\ {\rm CO}_2{\rm Pr}^n & 2\cdot32 & 3\cdot22 \\ {\rm CO}_2{\rm Bu}^1 & 2\cdot31 & 3\cdot23 \\ {\rm CONH}_2 & 2\cdot53 & 3\cdot27 \\ {\rm CO}_2{\rm H} & 2\cdot47 & 3\cdot29 \\ {\rm CO}_2{\rm Et} & 2\cdot42 & 3\cdot18 \\ {\rm CO}_2{\rm Pr}^n & 2\cdot41 & 3\cdot17 \\ {\rm CO}_2{\rm Bu}^n & 2\cdot41 & 3\cdot17 \\ {\rm CO}_2{\rm H} & 2\cdot44 & 3\cdot24 \\ & (2\cdot00) & (3\cdot10) \\ {\rm CO}_2{\rm H} & 2\cdot47 & 3\cdot39 \\ {\rm CO}_2{\rm H} & 2\cdot47 & 3\cdot39 \\ {\rm CO}_2{\rm Et} & 2\cdot42 & 3\cdot30 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

TABLE 1

Chemical shifts and coupling constants

* The values in parentheses are the results obtained from measurements of the solutions in $\rm CF_3CO_2H.$

These results show some resemblance to those given in ref. 2, but the latter show a wide variation in themselves. However, the present results show internal consistency, and lie in the order expected qualitatively for the general chemistry of pyridines and pyridine

⁵ H. Hogeveen, G. Maccagnani, and F. Taddei, Rec. Trav. chim., 1964, 83, 937.

⁶ P. Laszlo and P. von Ragué Schleyer, Bull. Soc. chim. France, 1964, 87.

1-oxides. Infrared ^{7,8} and ultraviolet spectra,⁹ and dipole moments,¹⁰ indicate that the order of electron-donor ability of substituted rings is: phenyl > 4-pyridyl 1-oxide, 3-pyridyl > 3-pyridyl 1-oxide, 4-pyridyl. This order is apparent from the σ -values.

TABLE 2

Substituent constants for a	iza- and m	odified as	za-substitu	ients
	σ			
Substituent	α	β	γ	<i>S</i> *
≥N	1.0	0.6	0.8	0.12
≥ ⁺ N−O ⁻	[1.5] †	0.7	0.4	0.12
≥ ⁺ NH	$2 \cdot 2$	1.9	1.3	0.14

* The standard deviation for the regression line. † Value suspect due to steric interaction.

Plot of Hammett σ -constants against δ for β -arylacrylic acids in dimethyl sulphoxide— \dot{H}_{α}

In addition, the 2-substituted rings are both shown to be powerfully electron-attracting. Pyridinium rings are known to be strongly electron-attracting at all positions; it is of interest that in the present circumstances the inductive and/or field effects appear to be more important than the mesomeric effect, as σ is less for a 4-substituted pyridinium ring than for the 3-substituted analogue.

We plan to explore the apparent wide variation of Hammett σ -constants for heterocyclic compounds. Some of the possible reasons for apparent variations may be mentioned. (i) Some of the values are considerably more negative than those for electron-withdrawing groups such as NO₂, and consequently require moderate extrapolations from the graphs of benzene data. (ii) ortho-Values suffer from some of the same disadvantages that are found for o-substituted benzenes: although steric effects will be low for N: and N⁺:H (not for N-oxides), direct field effects could be important, and, for n.m.r. work, anisotropic effects. (iii) Solvation effects will be particularly important in leading to variation in electron-withdrawing power of a hetero atom.

This work was carried out during the tenure (by F. J. S.) of a D.S.I.R. Research Studentship. We thank British Petroleum Ltd. for financial aid.

Тне	SCHOOL OF CHEMICAL SCIENCES, THE UNIVERSITY OF EAST ANGLIA NORWICH	Received March 10th 19651
7 A.	R. Katritzky, A. M. Monro, J. A. T. Beard, D. P. Dearnaley.	and N. J. Earl, J., 1958, 2182.

⁸ A. R. Katritzky, *Rec. Trav. chim.*, 1959, **78**, 995.
⁹ A. R. Katritzky, A. M. Monro, and J. A. T. Beard, *J.*, 1958, 3721.
¹⁰ A. R. Katritzky, E. W. Randall, and L. E. Sutton, *J.*, 1957, 1769.